On normal 2-geodesic transitive Cayley graphs
نویسندگان
چکیده
منابع مشابه
Product of normal edge-transitive Cayley graphs
For two normal edge-transitive Cayley graphs on groups H and K which have no common direct factor and $gcd(|H/H^prime|,|Z(K)|)=1=gcd(|K/K^prime|,|Z(H)|)$, we consider four standard products of them and it is proved that only tensor product of factors can be normal edge-transitive.
متن کاملOn the eigenvalues of normal edge-transitive Cayley graphs
A graph $Gamma$ is said to be vertex-transitive or edge- transitive if the automorphism group of $Gamma$ acts transitively on $V(Gamma)$ or $E(Gamma)$, respectively. Let $Gamma=Cay(G,S)$ be a Cayley graph on $G$ relative to $S$. Then, $Gamma$ is said to be normal edge-transitive, if $N_{Aut(Gamma)}(G)$ acts transitively on edges. In this paper, the eigenvalues of normal edge-tra...
متن کاملproduct of normal edge-transitive cayley graphs
for two normal edge-transitive cayley graphs on groups h and k which have no common direct factor and gcd(jh=h ′j; jz(k)j) = 1 = gcd(jk=k ′j; jz(h)j), we consider four standard products of them and it is proved that only tensor product of factors can be normal edge-transitive.
متن کاملQuotients of Normal Edge-Transitive Cayley Graphs
The symmetry properties of mathematical structures are often important for understanding these structures. Graphs sometimes have a large group of symmetries, especially when they have an algebraic construction such as the Cayley graphs. These graphs are constructed from abstract groups and are vertex-transitive and this is the reason for their symmetric appearance. Some Cayley graphs have even ...
متن کاملProduct of normal edge-transitive Cayley graphs
For two normal edge-transitive Cayley graphs on groups H and K which have no common direct factor and gcd(|H/H ′|, |Z(K)|) = 1 = gcd(|K/K′|, |Z(H)|), we consider four standard products of them and it is proved that only tensor product of factors can be normal edge-transitive. c ⃝ 2014 IAUCTB. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebraic Combinatorics
سال: 2013
ISSN: 0925-9899,1572-9192
DOI: 10.1007/s10801-013-0472-7